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Abstract We consider the problem of constructing Steiner minimum trees for a metric
defined by a polygonal unit circle (corresponding to σ ≥ 2 weighted legal orientations in the
plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner
points is given. We provide a simple proof that the angle configuration for a Steiner point
extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations
suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms
originally introduced for the uniform orientation metric generalises to the fixed orientation
metric. Finally, we give an O(σn) time algorithm to compute a Steiner minimum tree for a
given full Steiner topology with n terminal leaves.

Keywords Steiner tree problem · Normed plane · Fixed orientation metric ·
Canonical form · Fixed topology

1 Introduction

Given a fixed set of legal orientations in the plane, we consider the problem of constructing
minimum-length interconnection networks with the restriction that line segments use legal
orientations only. Furthermore, we assign weights to the legal orientations, such that the cost
of a line segment is its length times its weight, and the total cost of the network is the sum of
weighted line segment costs. This problem is equivalent to the Steiner tree problem under a
metric that has a polygonally bounded unit circle.
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The Steiner tree problem for fixed orientation metrics has important applications in VLSI
design, where millions of nets should be routed on a (small) number of chip layers. Each
layer is typically assigned a fixed orientation in order to make joint routing of multiple nets
feasible. Traditionally only horizontal and vertical routing orientations have been used in chip
production, but recent advances in production and routing algorithms have made it feasible
to perform routing in more than two perpendicular orientations. The best known examples of
such recent routing paradigms are the Y-architecture [9,10] (where three uniformly distrib-
uted orientations are used) and the X-architecture [30,32] (where four uniformly distributed
orientations are used). Furthermore, there is a growing need for assigning weights to indi-
vidual layers, such that some orientations can preferred or deferred [34].

In addition to applications in VLSI design, fixed orientation metrics can be used to approx-
imate arbitrary metrics in the plane. As shown is this paper, increasing the number of legal
orientations only increases the running times of computing Steiner minimum trees (SMTs)
linearly. Therefore it is feasible to make tight approximations of arbitrary unit circles by
polygonal unit circles.

Algorithms for solving several fixed orientation distance problems were proposed by
Widmayer et al. [31]. Lin and Xue [23] gave an efficient algorithm for embedding a mini-
mum spanning tree under a fixed orientation metric.

For the Steiner tree problem, the rectilinear case (where two perpendicular orientations
are given) has been studied most intensively due to its applications in traditional VLSI
design [14–16,36]. For the uniform orientation metric—where the given orientations are
uniformly distributed (are separated by a fixed angle)—important algorithms and fundamen-
tal properties for SMTs were given in [1–3,21,24,28]. Heuristics and efficient algorithms
for special cases of the problem in uniform orientation metrics were considered in [22,25].
Li et al. [20] considered the general (non-weighted) Steiner tree problem in fixed orientation
metrics, and gave some results related to the so-called generalized Hanan grid.

The Steiner tree problem in fixed orientation metrics is NP-hard, but when the topology
of the tree is known, the problem can be solved in polynomial time by using linear program-
ming [33,37]. Moreover, for the uniform orientation problem with λ ≥ 2 orientations—and
assuming that the topology is full (i.e., non-degenerate) and has n terminal points as leaves—
an O(λn) algorithm was proposed by Brazil et al. [5]. (Note that this algorithm is linear
in n for constant λ.) The concept of forbidden subpaths from [3,4] played a crucial role in
achieving this fast algorithm.

In this paper we generalize the linear-time algorithm in [5] to arbitrary fixed orientation
problems. We show that the result can be achieved without using the concept of forbidden
subpaths. Our results also nicely complement similar results, such as those of Du et al. [12],
for Steiner trees in any normed space defined by a strictly convex and differentiable unit
circle.

We have endeavoured, in this paper, to find simple, direct proofs of these results. Particu-
larly worthy of mention is Theorem 5.2, which shows that each full and fulsome component of
an SMT only requires a small number of different orientations. Not only is this a key to estab-
lishing the canonical forms in the later parts of the paper, but it also provides a much simpler
alternative proof to the less general and highly technical results on directions and forbidden
subpaths in SMTs for uniform orientation metrics in [3–5]. Our paper essentially subsumes
the main results of these papers, and many other structural results that have appeared in the
literature on uniform orientation (including rectilinear) SMTs.

We begin by generalising the concept of direction sets from [5] to fixed orientation met-
rics and present a �(σ) time algorithm to enumerate all direction sets for an arbitrary fixed
orientation metric with σ ≥ 2 legal orientations. Then we show that direction sets extend
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throughout full SMTs—meaning that the edges in a full SMT use at most six legal orienta-
tions. In addition, we show that these full SMTs can be assumed to have certain canonical
forms; one of these canonical forms has the property that the edges of a full SMT use at
most four legal orientations. Furthermore, on the basis of the so-called depth-first order
canonical form we give an O(σn) time algorithm to determine an SMT for a given full
(i.e., non-degenerate) Steiner topology with n terminal leaves.

The paper is organised as follows. In Sect. 2 we define the Steiner tree problem in normed
planes formally, present some known results and fix our notation. In Sect. 3 we present a useful
geometric characterisation of meeting angles for Steiner points, and in Sect. 4 we introduce
the concept of direction sets and show that we can identify all direction sets in �(σ) time. We
show that a full SMT uses at most six legal orientations (coming from a single direction set)
in Sect. 5. In Sect. 6 we give some fundamental results on length-preserving perturbations
of Steiner points, and we introduce the concept of canonical forms for full SMTs. Based on
these canonical forms, in Sect. 7 we devise a linear-time algorithm to compute an SMT for
a given full Steiner topology. We conclude the paper in Sect. 8.1

2 Preliminaries

We begin by setting some basic definitions and notation, and establishing generalisations
of some important properties of SMTs for uniform orientation metrics. For a more detailed
development of these properties, see [2,5].

2.1 Normed planes

Given a compact, convex, centrally symmetric domain D in the Euclidean plane E2, one can
define a norm ‖ · ‖D : E2 → R+ by setting ‖x‖D = r where x = ru and u ∈ ∂D, the
boundary of D. Denote the (closed) line segment joining distinct points x and y by xy. We
can then define a metric | · |D on E2 by setting |xy|D = ‖x−y‖D. The resulting metric space
M = (E2, | · |D) is called a normed (or Minkowski) plane with unit disc D. By definition,
∂D = {x : ‖x‖D = 1}, and is often referred to as the unit circle.

In this paper we will limit our attention to normed planes in which the unit circle ∂D is
a centrally symmetric polygon. The best known example of this is the rectilinear plane [14]
with norm ‖(a, b)‖D = |a| + |b|. Here ∂D is a square whose two diagonals lie on the x-axis
and y-axis, respectively (Fig. 1a). An important generalisation of the rectilinear plane is the
λ-geometry plane [2,28], for each integer λ(≥2), in which ∂D is a regular 2λ-gon (Fig. 1b).
Further generalisation is denoted fixed orientation geometry [31] (Fig. 1c).

In the λ-geometry plane, or in any normed plane in which ∂D is a centrally symmetric
2σ polygon inscribed in a (Euclidean) unit circle, we can avoid the difficulties of computing
directly with the associated metric as follows. We assume that line segments are restricted
to lying in σ distinct legal orientations corresponding to the σ diagonals of ∂D. Then, for
any pair of distinct points x and y, the length of the shortest path between them composed of
legal line segments is equal to |xy|D . In other words, line segments in the normed plane can
be represented by minimum paths composed of legal line segments in the Euclidean plane.
See [31] for more details on the properties of such a representation. This will be our point of
view throughout this paper.

1 Due to space restrictions, a few of the more straightforward proofs in this paper have been omitted. An
expanded version of this paper, including all proofs and some additional minor results, can be obtained
on-line [7].
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(c) (d)(b)(a)

Fig. 1 Examples of polygonal unit circles. (a) Rectilinear (2 perpendicular orientations). (b) Uniform ori-
entations (λ = 4). (c) Non-uniform orientations (σ = 3). (d) General weighted non-uniform orientations

As noted by Swanepoel [29], this idea can be extended to normed planes in which ∂D
is any centrally symmetric 2σ polygon—not necessarily inscribed in a Euclidean unit circle
(Fig. 1d). Again line segments in the normed plane can be represented by paths composed
of legal line segments, but now the total length of such a path is determined by weighting
each legal line segment according to its orientation. The weighting on each line segment is
the inverse of the distance of the corresponding vertex of ∂D from the centre of D. One can
again show, using similar arguments to those in [31], that the minimum length of such a path
corresponds to the normed plane distance metric between its endpoints.

It is natural to ask whether this approach can be extended to any given set of σ orien-
tations with given (positive) weights for each orientation. A potential problem is that the
corresponding 2σ polygon may not be convex, meaning that we do not have a normed plane.
However, we can circumvent this difficulty by considering the convex hull of the correspond-
ing polygonal region. For any vertex of the 2σ polygon that does not lie on this convex hull,
the corresponding orientation will never appear in a minimum path because a line segment
in that orientation can always be replaced by line segments in other legal orientations at a
smaller total cost. Hence, in this sense our approach is completely general for all finite sets
of orientations and all possible (positive) weightings.

2.2 Steiner trees in normed planes with polygonally bounded unit circle

Throughout this paper, we assume that a normed plane whose unit circle ∂D is a centrally
symmetric polygon is given. Let σ ≥ 2 denote the number of distinct legal orientations in
the normed plane.

Given a set of points N (so-called terminals) in the plane, a Steiner minimum tree (SMT) is
a shortest possible interconnection of N under the metric given by ∂D. An SMT may contain
vertices of degree three or more that are not among the given terminals; these vertices are
denoted Steiner points.

The graph structure of a tree T (i.e., the pattern of adjacencies of the vertices for a given
labelling of the terminals) is referred to as its topology T . If, for the given norm, the total
edge length of T , |T |D , is minimum for a given topology T (possibly in a degenerate way),
then we say that T is an SMT for T . For a fixed topology it follows that |T |D , treated as a
function of the Steiner points of T , is a convex function (since T lies in a normed plane).
Note, however, that this convexity is not strict; it may be possible to move Steiner points in
an SMT without increasing the length of the tree.

A tree T or its topology T is said to be full if all its terminals have degree 1; if every
Steiner point furthermore has degree three, then T is denoted a full Steiner topology. Given
any SMT T , we can decompose T into full components, that is, into full SMTs that meet
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Fig. 2 Embedding of a bent
edge. (a) The two embeddings
uc1v and uc2v that only require
two line segments (and a single
corner point); the union of all
shortest paths between u and v is
denoted by R(u, v). (b) An
embedding with identical
orientations at endpoints
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only at terminals. Furthermore, T or its topology T is said to be fulsome if T contains the
maximum possible number of full components for any SMT on the terminal set of T . If we
perturb the Steiner points in a fulsome SMT (without changing the length of the tree), then
we cannot make a Steiner point coincide in position with one of the terminals. Clearly, for
any set of terminals there always exists an SMT in which every full component is fulsome.

The edges of Steiner trees will be assumed to be represented by paths composed of line
segments in legal orientations, as discussed in Sect. 2.1. It follows from [31] that each edge
(u, v) of a Steiner tree uses at most two legal orientations; furthermore these two orientations
are necessarily adjacent. When two legal orientations are required to represent an edge, then
we call the edge a bent edge. Bent edges can be realised using exactly two legal line seg-
ments. There are two possible embeddings of such a path in the plane E2, as shown in Fig. 2a.
A point (of degree 2) at which two legal line segments with different orientations meet is
called a corner point. There are, of course, many other possible embeddings using multiple
corner points, and the union of all these embeddings (or shortest paths) is a parallelogram
R(u, v). It is sometimes useful to consider an embedding with two corner points (as shown
in Fig. 2b) which has the property that the path has the same orientation at both endpoints.

3 Meeting angles for Steiner points

In this section we give a complete characterisation of the distribution of meeting angles of
Steiner points in SMTs for a metric defined by unit circle ∂D. Let ul , l = 0, . . . , 2σ − 1
be the 2σ vectors that define the vertices of the unit circle ∂D (in counter-clockwise order
around the circle). These are unit vectors in the metric given by ∂D, that is, they have length
1 under metric | · |D . By the central symmetry of ∂D, we have that ul = −u(l+σ) mod 2σ .
Each unit vector corresponds to a legal direction, that is, under this metric, any (oriented)
legal line segment must use one of the 2σ unit vector directions. The successor of unit vector
ul is the vector ul+1 where l + 1 := 0 if l = 2σ − 1.

In the remainder of this paper we will make frequent use of the assumption that ∂D is
placed somewhere in the plane such that its centre coincides with a given point s. For such
a fixed centre we can unambiguously refer to the vertices of ∂D, which are the endpoints of
the unit vectors ul for this fixed centre. The vertex that corresponds to the endpoint of unit
vector ul is denoted by ul for l = 0, . . . , 2σ − 1.

3.1 Steiner configurations

Following [29], we define a Steiner configuration in the normed plane as a star with centre s
and leaves x1, . . . , xm (with s, x1, . . . , xm all distinct) that is part of some SMT with Steiner
point s. By [29], Steiner points in a normed plane have degree at most 4, hence m = 3 or
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Fig. 3 Meeting angles
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4 in a Steiner configuration. Here we first consider the case where m = 3, and return to the
(special) m = 4 case in Sect. 5.

Consider a star with Steiner point s and leaves x1, x2 and x3. Assume w.l.o.g. that the
counter-clockwise order of the leaves is x1, x2, x3. We define the meeting angles of s to be
the angles � x1sx2, � x2sx3 and � x3sx1, i.e., the angles that appear counter-clockwise around
the Steiner point s (Fig. 3).

Du et al. [12] have proved the following result for strictly convex and differentiable unit
circles (which includes the Euclidean metric): If one of the edges of the star, say sx1, is given,
then the orientations of the other edges sx2 and sx3 are unique. In other words, if the Steiner
point s and one of the leaves, say x1, are given, then the meeting angles of s are unique. In
this section we develop an analogous version of this result for polygonal unit circles. We start
with the following theorem from [26], which holds for any normed plane.

Definition 3.1 An angle φ = � x1sx2 is critical if φ ≤ π and there exists a point x3 �= s such
that Steiner point s with leaves x1, x2, x3 forms a Steiner configuration, with φ = � x1sx2 as
one of the meeting angles. (Compared to the definition of critical in [26] we have added the
condition that the meeting angle is at most π .)

Theorem 3.1 [26] A star with centre s and leaves x1, x2, x3 forms a Steiner configuration
in a normed plane if and only if all meeting angles are critical.

Chakerian and Ghandehari [8] gave a very useful characterisation of Steiner configura-
tions for strictly convex and differentiable unit circles. If a unit circle is placed with its centre
at s and l1, l2 and l3 are the tangents of the unit circle where the rays s → x1, s → x2 and
s → x3 intersect the unit circle, then l1, l2 and l3 form a triangle whose centroid coincides
with s. We say that the tangents l1, l2 and l3 have the centroid-property. For more general
unit circles, including polygonal unit circles, the tangents are not in general well-defined.
However, by considering supporting lines instead of tangents, the following slightly weaker
result can be proved for arbitrary normed planes (or unit circles):

Lemma 3.1 [26] The following statements are equivalent in a normed plane with unit
circle ∂D:

(i) � x1sx2 is a critical angle
(ii) if the unit circle ∂D with centre s intersects the ray s → x1 at x ′

1 and the ray s → x2

at x ′
2, then there exist lines l1, l2 and l3 supporting ∂D, l1 at x ′

1 and l2 at x ′
2, such that s

is the centroid of the triangle formed by l1, l2 and l3 (or equivalently, l1, l2 and l3 have
the centroid-property).
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3.2 Steiner configurations for fixed orientation metrics

Based on Lemma 3.1, we give a characterisation of Steiner configurations for polygonal unit
circles that is similar to the one shown by Chakerian and Ghandehari [8]. In order to do so,
we need to characterise under which conditions a given supporting line l1 of the unit circle
can be a side in a triangle of supporting lines that has s as its centroid. Our characterisation
will be based on the following condition on when a set of supporting lines l1, l2 and l3 has
the centroid-property.

Lemma 3.2 [12] Let l0 be the line that is parallel to l1 and contains s. Let � be the Euclid-
ean distance between the parallel lines l1 and l0. Consider the line L that is parallel to l1 at
distance 3� from l1 (and at distance 2� from l0). Let w2 be the intersection of l2 with l0 and
let w3 be the intersection of l3 with l0 (Fig. 4a). Then supporting lines l1, l2 and l3 satisfy
the centroid property if and only if (i) lines l2 and l3 intersect somewhere on the line L, and
(ii) |sw2| = |sw3|, where | · | denotes the Euclidean distance.

In the following lemmas and theorems we will frequently refer to l0 and L as defined by
Lemma 3.2. First we give two simple lemmas that further characterize sets of supporting
lines that fulfill the centroid-property (proofs are given in [7]).

Lemma 3.3 Let l1, l2 and l3 be a set of supporting lines that fulfils the centroid-property,
and let l0 be the line that is parallel to l1 and contains s. Then neither l2 nor l3 can support
∂D at a point that is strictly between l1 and l0.

Lemma 3.4 Let l1 be a line that supports a unit circle ∂D with centre s, and let l0 be the line
that is parallel to l1 and contains s. If l0 does not intersect a vertex of ∂D then there exists
exactly one pair of supporting lines l2 and l3, such that l1, l2 and l3 have the centroid-property.

If, on the other hand, l0 does intersect a vertex of ∂D then by the central symmetry of ∂D
it intersects two vertices. We consider this case in the following lemma.

Lemma 3.5 Let l1 be a line that supports a unit circle ∂D with centre s, and let l0 be the line
that is parallel to l1 and contains s. If l0 intersects ∂D at two vertices u j and uk then either
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Fig. 4 Centroid-property. (a) Geometric characterisation of triangle with centroid s. (b) Illustration of proof
of Lemma 3.5
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• there exists exactly one pair of supporting lines l2 and l3, such that l1, l2 and l3 have the
centroid-property, or

• there exists an infinite set of supporting lines l2 and l3 such that l1, l2 and l3 have the
centroid-property, and in each case l2 and l3 support ∂D at u j and uk, respectively.

Proof Recall that u j and uk are the vertices of ∂D that are intersected by l0. The predecessor
of u j (resp. uk) on ∂D is u j−1 (resp. uk−1) and the successor is u j+1 (resp. uk+1).

Let z−
j be the intersection of the line through u j and u j+1 with L , and let z+

j be the

intersection of the line through u j−1 and u j with L; define z−
k and z+

k similarly (Fig. 4b).
Now we distinguish between three cases, depending on the order (from left to right) in

which the points z−
j and z+

k appear on L:

1. z−
j < z+

k : In this case any point z in the interval [z−
j , z+

k ] defines a pair of supporting lines
l2 and l3 that contain z and support ∂D on opposite sides, such that l1, l2 and l3 have the
centroid-property. In this case we have an infinite number of supporting line pairs l2 and
l3, and all these pairs support ∂D at u j and uk , respectively.

2. z−
j = z+

k : Here the point z = z−
j = z+

k defines a pair of supporting lines l2 and l3 that
contain z and support ∂D on opposite sides, such that l1, l2 and l3 have the centroid-prop-
erty. Note that l2 supports ∂D both at u j and u j+1 (is a tangent), and similarly l3 supports
∂D both at uk and uk−1. In this case this is the only pair of supporting lines that jointly
with l1 have the centroid-property.

3. z−
j > z+

k : In this case there is clearly no pair of supporting lines that (jointly with l1)
have the centroid-property and support ∂D at either u j or uk . It follows that the method
of proof of Lemma 3.4 applies to this case; hence, exactly one pair of supporting lines
jointly with l1 has the centroid-property. The common intersection point for this pair of
supporting lines lies strictly between z+

k and z−
j on L . �	

We are now ready to prove the main result of this section—namely to make a precise link
between the centroid-property and Steiner configurations for polygonal unit circles.

Theorem 3.2 Consider a normed plane defined by a polygonal unit circle ∂D, and a star S
with centre s and leaves x1, x2 and x3. In the unit circle with centre s, let x ′

1, x ′
2 and x ′

3 be the
intersections with (the extensions of) the edges sx1, sx2 and sx3, respectively. Assume that
one of the intersections, say x ′

1, is not a vertex of the polygonal unit circle. Then S forms a
Steiner configuration if and only if there exists a set of lines l1, l2 and l3 supporting ∂D at
x ′

1, x ′
2 and x ′

3, respectively, such that l1, l2 and l3 have the centroid-property.

Proof Consider first the case where we have a set of supporting lines l1, l2 and l3 that satisfy
the centroid-property. By Lemma 3.1, each of the meeting angles in the star S are therefore
critical angles, since we can use supporting lines l1, l2 and l3 to prove this for all three meeting
angles. Hence, by Theorem 3.1, the star S forms a Steiner configuration.

For the other direction, assume that S forms a Steiner configuration. All meeting angles of
S are therefore critical by Theorem 3.1. For each meeting angle in S, we know by Lemma 3.1
that there exist supporting lines having the centroid-property. However, these sets of support-
ing lines need not be identical: the supporting lines for, e.g., meeting angle � x1sx2 support
x ′

1 and x ′
2 on ∂D, but need not support the third point x ′

3 on ∂D. We will now prove that there
indeed exists a set of supporting lines with the centroid-property supporting all three points
x ′

1, x ′
2 and x ′

3—thus finishing the proof of the theorem.
By the assumptions of the theorem we know that a supporting line of x ′

1 is necessarily a
unique tangent; let l1 denote this tangent. From Lemmas 3.4 and 3.5 we know that l1 is either
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part of a unique set of supporting lines with the centroid-property or is part of an infinite set
of such supporting lines. If l1 is part of a unique set of supporting lines l1, l2 and l3, then this
set is the only one that proves that meeting angles � x1sx2 and � x3sx1 are critical. This set
of supporting lines must therefore support ∂D in x ′

1, x ′
2 and x ′

3 simultaneously.
Now assume that there exists an infinite set of supporting lines l1, l2 and l3 that have the

centroid-property. By Lemma 3.5, we have the situation illustrated in Fig. 4b. Each possible
supporting line l2 supports some fixed vertex u j of ∂D, and each possible supporting line
l3 supports another fixed vertex uk of ∂D. As a consequence, x ′

2 must be somewhere on the
line segment S j of ∂D defined by vertices u j and u j+1; similarly, x ′

3 must be somewhere on
the line segment Sk defined by vertices uk−1 and uk . There are three cases to consider:

• x ′
2 = u j : In this case we can pick l3 such that it overlaps with Sk , and choose l2 such that

l1, l2, and l3 have the centroid-property. Since l3 overlaps with Sk , it supports any possible
point x ′

3 on Sk .
• x ′

3 = uk : This case is symmetric to the above—here we let l2 overlap with S j and choose
l3 accordingly.

• x ′
2 �= u j and x ′

3 �= uk : This case cannot occur, since the angle � x2sx3 is not critical. The
reason is that the tangents l2 and l3 must overlap with S j and Sk , respectively. However,
there exists no third supporting line l1 such that l1, l2 and l3 have the centroid-property.
The intersection point between l2 and l3 is strictly between the lines l0 and L (in Fig. 4b),
hence the third edge of the triangle must intersect the interior of the unit circle. �	
The theorem requires that one of the intersections with the unit circle appears at a tangent

point. However, this is no restriction as will be clear from the discussion in next section
(in particular Lemma 4.1).

4 Direction sets

For any Steiner configuration of degree m = 3 there is an associated set of legal directions,
namely the legal directions used by all edges in the star (where directions are considered as
oriented outward from the centre). A Steiner configuration S is said to be maximal if there
exists no other Steiner configuration that uses a strict superset of the legal directions used by
S. We define a direction set to be the set of legal directions used by a maximal Steiner con-
figuration. Note that in λ-geometry these direction sets are the same as the ‘feasible direction
sets’ defined in [5].

For a direction set U we define the complementary direction set as the direction set that is
obtained by reversing all directions in U (Fig. 5). By the central symmetry of ∂D, direction
sets appear as pairs of complementary direction sets.

Lemma 4.1 A direction set contains at least 4 and at most 6 distinct directions.

Proof The upper bound is obvious if m = 3, since each edge uses at most two legal directions.
We establish the lower bound using a continuity argument.

Suppose, contrary to the claim of the lemma, there exists a direction set U with only three
directions. Let T be an SMT with three terminals, t1, t2, t3 and a Steiner point s, such that
T has direction set U . By convexity, the choice of s is unique, since if there were a second
Steiner point s′ that gave an SMT then every point in the line segment ss′ would also be the
Steiner point of an SMT. This would mean that a larger direction set strictly containing U
could be found by moving the Steiner point from s a small distance towards s′.
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(b)(a)

Fig. 5 Complementary direction sets in λ-geometry for λ = 4

For all points p in the plane define the function f (p) := |t1 p|D +|t2 p|D +|t3 p|D . Since
T is an SMT it follows that, for every p, f (p) ≥ f (s) = |T |D . For every ε > 0, let Bε be
the open Euclidean ball with centre s and radius ε. By the continuity of f it follows that for
each ε there exists δ = δ(ε) > 0 such that f (p) > f (s) + δ for all p �∈ Bε . Clearly we can
also assume that δ < ε.

Now choose ε > 0 sufficiently small such that perturbing one or both endpoints of each
edge ti s by at most ε results in an edge in the normed plane that still uses a direction from
U (for i ∈ {1, 2, 3}). Suppose we move terminal t1 to t ′1 not on the line through t1s such that
0 < |t1t ′1|D < δ(ε) and such that T ′, the SMT for t ′1, t2, t3, satisfies |T ′|D ≤ |T |D . Let s′ be
a Steiner point for T ′. Then

f (s′) ≤ |T ′|D + |t1t ′1|D
< |T |D + δ.

Hence s′ lies in Bε . By our choice of ε it follows that U ′, the direction set of T ′, contains
U as a subset (since the endpoints of the three edges of T have each been perturbed by at
most ε). Since exactly one of the terminals of T has been perturbed it is easy to see that the
direction set of T ′ is not the same as the direction set for T . Hence U is a strict subset of U ′,
contradicting the statement that U is a direction set. �	

A maximal Steiner configuration always has at least one edge that contributes two legal
directions to the corresponding direction set (by Lemma 4.1). As in [5] we colour one such
edge red and the other edges green and blue, respectively, in counter-clockwise order from
the red edge. We extend these colour labels to the directions in the direction set. A direc-
tion set with coloured directions is denoted a coloured direction set. A coloured direction
set always contains two red directions and these are adjacent legal directions. For a given
colour, we therefore have either one or two legal directions in a coloured direction set. When
we have two directions, these are labelled as the (exclusively) primary and the (exclusively)
secondary direction, respectively, in counter-clockwise order around the unit circle. When
we have a single direction for a given colour, this direction can be labelled either primary or
secondary.

Assume we fix a pair of adjacent red directions, which correspond to two unit vectors ui

and ui+1 of ∂D. How many coloured direction sets exist for this pair of red edges? Using
Lemmas 3.4 and 3.5 we conclude that there exist either one or two direction sets for a fixed
pair of red directions: For the case considered in Lemma 3.4 there is exactly one direction set
which is given by the unit vectors whose endpoints are supported by the unique supporting
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lines l1, l2 and l3 having the centroid-property (where l1 supports ∂D at the endpoints of
ui and ui+1). For the first subcase considered in Lemma 3.5 (Fig. 4b) there are exactly two
direction sets—one corresponding to a pair of green directions u j and u j+1, and a single blue
direction uk ; the other corresponding to a single green direction u j and a pair of blue direc-
tions uk−1 and uk . The other positions of l2 and l3 do not give direction sets as in each case
the corresponding set of directions is not maximal. For the remaining subcases of Lemma 3.5
there is exactly one direction set. We summarise:

Theorem 4.1 There are at least 2σ and at most 4σ coloured direction sets, where σ is the
number of legal orientations defined by ∂D. More precisely, there are k pairs of complemen-
tary coloured direction sets, where σ ≤ k ≤ 2σ .

In the remainder of this section, we first develop an O(σ ) time algorithm to determine all
(coloured) direction sets for a fixed (red) edge, that is, assuming that the adjacent directions of
a red edge are given. Then we use this algorithm to develop an optimal �(σ) time algorithm
for determining all coloured direction sets.

4.1 Linear-time algorithm for one fixed edge

In this section we give an O(σ ) time algorithm to determine all coloured direction sets for
a fixed pair of red directions. By the arguments of Theorem 4.1, there is either one direction
set or two direction sets for a fixed pair of red directions. (By iterating over all 2σ choices of
adjacent red directions, we can identify all coloured direction sets in O(σ 2) time.)

Let ui and ui+1 be a pair of red directions (here and in the following we identify directions
with the unit vectors of ∂D). In order to determine the direction set(s) for this pair of red
directions, we employ the construction used in the proof of Lemma 3.4.

Let l1 be the tangent supporting ∂D at ui and ui+1, and define l0 and L as in Sect. 3.1. In
counter-clockwise order around ∂D, starting at ui+1, let u j be the first vertex that is on or
above l0. Define l2(z) as the tangent supporting ∂D at u j−1 and u j (Fig. 6a), where z denotes
the intersection of l2(z) with L . Let l3(z) be the other supporting line of ∂D that intersects
z (Fig. 6a). Line l3(z) either supports ∂D at a single vertex uk , or at two adjacent vertices
uk−1 and uk . Clearly, given l1, the supporting lines l2(z) and l3(z) can be determined in O(σ )

time.
Now we simulate a continuous movement of the point z to the left along L . Let w2(z)

and w3(z) be the intersections of l2(z) and l3(z), respectively, with l0 (Fig. 6a). Note that
initially we have |sw2(z)| < |sw3(z)|, where s is the centre of ∂D. The movement of z is
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Fig. 6 Algorithm to determine direction set for fixed pair of red directions. (a) Initial position of z.
(b) Computation of z j and zk
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continued until we have a point z∗ such that |sw2(z∗)| = |sw3(z∗)|, that is, until we fulfill
the centroid-property; by Lemmas 3.4 and 3.5 such a point must exist. After initialisation the
algorithm is as follows:

1. Define z j as the intersection of the line supporting ∂D at u j and u j+1 with L; similarly,
define zk as the intersection of the line supporting ∂D at uk and uk+1 with L (Fig. 6b).
Note that both z j and zk are strictly to the left of z on L; let z′ be the one of these two
(possibly identical) points that is closest to z.

2. If |sw2(z′)| < |sw3(z′)|: If z j = z′ then set j = j + 1. If zk = z′ then set k = k + 1. Set
z = z′ and goto 1.

3. If |sw2(z′)| > |sw3(z′)|: The point z∗ where |sw2(z∗)| = |sw3(z∗)| must lie strictly
between z and z′ on L . Hence there is a unique direction set where ui−1 and ui are the
two red directions: u j is the single green direction and uk the single blue direction (four
directions in total).

4. If |sw2(z′)| = |sw3(z′)|:
(a) z j = z′ and zk �= z′: Here we have a unique direction set where ui−1 and ui are the

two red directions: u j and u j+1 form a pair of green directions and uk the single blue
direction (five directions in total).

(b) z j �= z′ and zk = z′: If either u j or uk+1 are not on the line l0 through s, then we
have a unique direction set where ui−1 and ui are the two red directions: uk and uk+1

form a pair of blue directions and u j a single green direction (five directions in total).
If both u j and uk+1 are on the line l0 through s, then we have two direction sets
where ui−1 and ui are the two red directions: The one just described, and one where
u j and u j+1 form a pair of green directions and uk+1 is a single blue direction (five
directions in total). Note that in this case we have u j = w2(z′) and uk+1 = w3(z′).

(c) z j = zk = z′: Here we have a unique direction set where ui−1 and ui are the two red
directions: u j and u j+1 form a pair of green directions and uk and uk+1 form a pair
of blue directions (six directions in total).

The above algorithm clearly takes O(σ ) time, since steps 1 and 2 take constant time, and
are iterated at most 2σ times: in each iteration j and/or k is increased, and there are at most
σ possibilities for each iterator.

Theorem 4.2 The direction sets (one or two) for a given pair of red directions can be deter-
mined in O(σ ) time.

4.2 Linear-time enumeration algorithm

The idea of the linear-time algorithm to enumerate all coloured direction sets is first to com-
pute a set of supporting lines l1, l2 and l3 for a fixed pair of red directions ui−1 and ui using
the O(σ ) time algorithm from the previous section. Intuitively, we then rotate all three sup-
porting lines in counter-clockwise order around ∂D while maintaining the centroid-property,
locating all positions of the supporting lines that correspond to direction sets. In order to
prove that this can be done efficiently, we need some definitions and technical results.

Consider a line l1 that supports ∂D at a single vertex ui . We say that ui is the rotation
point of l1. Consider a counter-clockwise rotation of l1 around its rotation point. We continue
this rotation until l1 also supports the successor ui+1 of ui . Then ui+1 becomes the new
rotation point, and we continue the counter-clockwise rotation. This is called a rotation of l1
around ∂D.

Each step in the algorithm will strictly rotate around ∂D at least one of the supporting lines
l1, l2 and l3 that fulfill the centroid-property. However, not all supporting lines necessarily
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rotate in every step. The important fact that we will prove in Lemma 4.2 below is that none
of the supporting lines need to rotate clockwise in order to maintain the centroid-property.
Furthermore, in each step of the algorithm—which takes constant time—at least one of the
supporting lines will change its rotation point to the successor on ∂D of the previous rotation
point; such a supporting line will after the rotation step be a tangent supporting both the
previous and new rotation point. Thus the running time of the algorithm is clearly O(σ ),
since each supporting line has exactly 2σ possible rotation points.

Two types of constant-time rotation steps are used by the algorithm where the latter is
only performed if the former cannot be performed.

Degenerate rotation. Consider any of the current supporting lines l1, l2 and l3. If this sup-
porting line is part of more than one set of supporting lines fulfilling the centroid-property,
then we have the situation considered in case 1 in the proof of Lemma 3.5 and illustrated
in Fig. 4b. In this case we simply rotate the other two supporting lines counter-clockwise as
much as possible; in Fig. 4b the situation after this rotation corresponds to the case where
one of the lines supports ∂D at u j and u j+1, while the other line only supports ∂D at uk .

Non-degenerate rotation. Consider the current supporting lines and assume that their
rotation points are ui , u j and uk , respectively. Imagine that we rotate l1 maximally counter-
clockwise while maintaining the centroid-property and the invariant that l1, l2 and l3 support
∂D at ui , u j and uk , respectively. In Lemma 4.2 we prove that this cannot force l2 and l3 to
rotate clockwise around their rotation points (i.e., in the “opposite” direction). A rotation of
l1 therefore must lead to one of the following events:

• l1 becomes a tangent through ui and ui+1

• l2 becomes a tangent through u j and u j+1

• l3 becomes a tangent through uk and uk+1

Consider the event that l1 becomes a tangent through ui and ui+1. We know that l2 and l3
must support ∂D at u j and uk , respectively. Thus we need to determine if there exists a set of
supporting lines fulfilling the centroid-property, where l1 is a tangent through ui and ui+1,
l2 supports ∂D at u j and l3 supports ∂D at uk . This problem can be solved in constant time
using a simple geometric construction as shown in Fig. 7. The interval I = I j ∩ Ik on L
must be non-empty, and among the points z ∈ I there should be one for which the supporting
lines through z have identical distances on l0 to s. This can be tested in constant time by

Fig. 7 Constant-time
construction to determine if there
exists a set of supporting lines
fulfilling the centroid-property,
where l1 is a tangent through ui
and ui+1, l2 supports ∂D at u j
and l3 supports ∂D at uk
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constructing the supporting lines for the two endpoints of I . (Note that we need not compute
the correct location of z, but only show that it exists.)

By using a similar constant-time construction we can test if there exists a set of supporting
lines fulfilling the centroid-property, where l1 supports ∂D at ui , l2 is a tangent through u j

and u j+1, and l3 supports ∂D at uk . Finally, we can also test in constant-time if there exists a
set of supporting lines fulfilling the centroid-property, where l1 supports ∂D at ui , l2 supports
∂D at u j , and l3 is a tangent through uk and uk+1. If more than one set of supporting lines
exist, we choose one among the sets in lexicographical order, that is, choose the set where l1
is a tangent first, then the one where l2 is a tangent and finally the one where l3 is a tangent.

Lemma 4.2 If we rotate l1 counter-clockwise while maintaining the centroid-property and
the invariant that l1, l2 and l3 support ∂D at ui , u j and uk, respectively, then neither l2 nor
l3 can rotate in clockwise direction.

Proof Assume to the contrary that as we rotate l1 counter-clockwise, l2 rotates (strictly)
clockwise. Let (l A

1 , l A
2 , l A

3 ) be the set of supporting lines before we started this rotation. As
we continue the rotation of l1 (possibly via succeeding rotation points) around ∂D, we reach
a point where l2 is “pushed back” to its original position. That is, we have another a set of
supporting lines (l B

1 , l B
2 , l B

3 ) that fulfils the centroid-property where l B
2 = l A

2 . But since l B
1

is rotated strictly more counter-clockwise than l A
1 , this a contradiction to the fact that we

should have rotated l A
1 in a degenerate rotation step when we had the set of supporting lines

(l A
1 , l A

2 , l A
3 ).

A similar argument can be used to prove that l3 cannot rotate clockwise as we rotate l1
counter-clockwise. �	
Theorem 4.3 The set of coloured direction sets can be determined in �(σ) time.

5 Directions in a full SMT

The aim of this section is to show that the edges in a full SMT use at most six legal orienta-
tions. This will prove to be a powerful result for developing canonical forms in later parts of
the paper. Steiner points in any normed plane have degree m = 3 or m = 4 [11,29]. In this
section we first show that if the full SMT is fulsome, then we may assume that all Steiner
points have degree m = 3 (except in a very special case). Then we prove that there exists
a single direction set that is used by every (degree three) Steiner point in a full and
fulsome SMT.

5.1 Splitting of degree four Steiner points

A degree four Steiner point s consists of two opposite pairs of edges. Let the neighbours of
s be denoted by v1, v2, v3 and v4 in counter-clockwise order around s (Fig. 8a). One of the
opposite pairs of edges, say, (s, v1) and (s, v3) must be collinear [29]; this is called the first
pair of opposite edges. The other pair of edges, (s, v2) and (s, v4), is called the second pair of
opposite edges. Our classification into pairs is not necessarily unique, but this is not important
in the following. The results of the following two lemmas were essentially given by Li et al.
[20] (their Lemma 2); somewhat shorter proofs based on the work by Swanepoel [29] are
given in [7].

Lemma 5.1 The first pair of opposite edges around a degree four Steiner point must be
straight.
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Fig. 8 Degree four Steiner point. (a) Movement of s to point s′ on the first pair of opposite edges. (b) Splitting
into degree three Steiner points (option one). (c) Splitting into degree three Steiner points (option two)

The second pair of opposite edges has a slightly relaxed, but still quite restricted form:

Lemma 5.2 The second pair of opposite edges around a degree four Steiner point uses
adjacent legal orientations only. Furthermore, let S be the intersection of the shortest path
parallelogram R(v2, v4) with the first pair of opposite edges (hence S is a segment). Then
|v2s′|D is the same for any point s′ ∈ S; similarly, |v4s′|D is the same for any point s′ ∈ S.

A consequence of this lemma is that if the second pair of opposite edges are not straight
and collinear, then we can always split the Steiner point s into a pair of adjacent degree three
Steiner points. In fact, this split can be made in two topologically different ways as indicated
in Fig. 8b and c.

Define a cross as a degree four Steiner point where both the first and second pair of oppo-
site edges are straight and collinear. So far we have shown that unless the degree four Steiner
point is a cross, we can always split it into two adjacent degree three Steiner points. We will
now show that even if the Steiner point is a cross, then in most cases we can still split it into
two degree Steiner points. First we prove an intermediate result that turns out to be helpful
in later parts of the paper.

Lemma 5.3 Let e = (s1, s2) be an edge connecting two Steiner points (s1 and s2) in a ful-
some SMT T . Let e1 = (s1, v1) be the next edge incident with s1 travelling counter-clockwise
from e, and let e2 = (s2, v2) be the next edge incident with s2 travelling clockwise from e.
Then there exists an embedding of T such that θ , the angle at s1 between e and e1, and φ,
the angle at s2 between e and e1, satisfy θ + φ > π .

Proof For the given embedding of T , let u1 be the outward direction of e1 at s1 and let u2

be the outward direction of e2 at s2. Observe that

θ + φ ≥ π (1)

since otherwise we could simultaneously perturb s1 in direction u1 and s2 in direction u2

decreasing |s1s2| and hence decreasing |T |D , which contradicts minimality.
Now suppose that the lemma does not hold; in other words, that θ + φ = π , as illustrated

in Fig. 9. Then we can perform a slide on e, by which we mean a simultaneous movement
of s1 in direction u1 and s2 in direction u2 (at the same speed), without increasing the length
of T . (This is an example of a zero-shift, which we study in more detail in Sect. 6.) Note
that neither e1 nor e2 contains a corner point, since otherwise there would exist an alternative
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Fig. 9 A slide on the edge e
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s2

e3

e1

e2

e

embedding of the edge, which, by Eq. 1, would have a larger angle at s1 or s2. It follows that
we can continue to slide e until either s1 coincides with v1 or s2 coincides with v2.

Assume, without loss of generality, that s1 coinciding with v1 occurs first. If v1 is a ter-
minal then we have a contradiction to T being fulsome. If v1 is a Steiner point then let θ1 be
the meeting angle at v1 between e1 and the next edge e3 going counter-clockwise around v1

from e1. By Theorem 3.1, θ1 ≤ π . If θ1 < π then there exists an embedding of e3 such that
continuing to slide e past v1 strictly decreases the length of e, contradicting the minimality
of T . Hence θ1 = π , and e3 is a straight edge. We can now continue to slide e past v1 without
increasing |T |D . The same argument applies at each Steiner point encountered. Hence we can
continue the slide until we reach a terminal, giving a contradiction to T being fulsome. �	

A consequence of this lemma is that in a fulsome SMT we cannot have a pair of parallel
straight edges that are connected by a third edge.

Theorem 5.1 In a fulsome SMT, a degree four Steiner point can always be split into two
adjacent degree three Steiner points unless it is a cross and is adjacent to terminals only.

Proof By the comment following Lemma 5.2, we only need to consider the case where the
Steiner point s is a cross. Assume that one of the neighbours of s is a Steiner point v, and that
v has degree three. By Lemma 5.3, there exists an embedding of the SMT such that neither
of the line segments va and vb connecting v to the two neighbours other than s are parallel
to the straight edges incident to s (Fig. 10a). Hence we can make the (small) local change
indicated in Fig. 10b without increasing the length of the tree. This change will split s into
two adjacent degree three Steiner points s1 and s2 while moving v to a new position v′.

2

(b)

ba

(a)
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ss
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Fig. 10 Splitting of a cross into two adjacent degree three Steiner points
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Now, if v was a degree four Steiner point, then we arrive at a contradiction to length-
minimality, since the local change given above would decrease the length of the tree. �	

In the remainder of this paper we will therefore assume that there always exists an embed-
ding of a full and fulsome SMT where all Steiner points have degree three. (The construction
of a cross with terminals as neighbours can easily be handled separately.)

5.2 Direction sets for full SMTs

Let T be a full and fulsome SMT where all Steiner points have degree three. We begin by
describing a (not necessarily unique) method of colouring the edges of T .

Pick any Steiner point s and any feasible coloured direction set U for s. The direction
set U defines a colour for each of the edges incident with s, and these appear as red, green
and blue in counter-clockwise order around s. Now pick any Steiner point neighbour s′ of
s. Again assume that the colours appear in counter-clockwise order as red, green and blue
around s′; thus the single coloured edge incident with s′ uniquely defines the colours of the
other two edges. Repeat this procedure until all edges of T have been coloured.

We also assign a parity to the vertices of T depending on whether the path in T from s
to that vertex contains an odd or even number of edges. Since T is a tree, this assignment of
parity is well defined. When we in the following say that there exists a single direction set U
that is used by all Steiner points of T , the interpretation should be that the direction set U is
used at even vertices while the complementary direction set of U is used at odd vertices.

Theorem 5.2 Given a full and fulsome SMT, there exists a single direction set that is used
by every Steiner point in the tree.

Proof We prove the theorem by showing that, given any two adjacent Steiner points s1 and
s2 in a full and fulsome SMT, there exists a single direction set that is used by s1 and s2,
and furthermore there exists a small finite perturbation of s1 and s2 such that the resulting
tree is still a full SMT and the directions used by the edges incident with s1 exactly coincide
with the directions used by the edges incident with s2. This means that the direction set at
any Steiner point can be propagated throughout the SMT, since all internal nodes of the full
SMT are Steiner points. The theorem then immediately follows.

Let s1 and s2 be adjacent Steiner points in a full and fulsome SMT. For a given embedding
of this SMT, let v1 and v2 be the nodes or corner points adjacent to s1 on the other two incident
edges, travelling counter-clockwise from s1s2, i.e., line segments s1v1 and s1v2 each use a
single legal orientation. Similarly, let v3 and v4 be the nodes or corner points adjacent to s2 on
the other two incident edges, travelling counter-clockwise from s2s1. Let T be the resulting
full SMT on terminal set {v1, v2, v3, v4} with Steiner points s1 and s2. This is illustrated in
Fig. 11a. Let u1 and u2 be the directions of −−→s1v1 and −−→s1v2, respectively, and let u3 and u4 be
the directions of −−→s2v3 and −−→s2v4, respectively.

For simplicity, we assume either that s1s2 is a straight edge or that it is embedded using two
corner points (as in Fig. 2b), so that both ends of the edge use the same direction. Let θ1, θ2, θ3

be the three angles around s1, travelling counter-clockwise from s1s2, and let φ1, φ2, φ3 be
the three angles around s2, travelling counter-clockwise from s2s1. Again, this is illustrated
in Fig. 11a. By Lemma 5.3, we can choose the embedding of the original full SMT such that

θ1 + φ3 > π. (2)

Suppose that

θ3 > φ3. (3)
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Fig. 11 Performing a shift on adjacent Steiner points

Under this assumption, we construct a transformation on T that does not increase its length.
We do this by defining a shift on s1 and s2 (shifts will be discussed in more generality in the
next section). This involves moving each of s1 and s2 a distance ε in direction u1 to s′

1 and
s′

2, respectively, where ε > 0 is small compared to all edge lengths in T .
We claim that we can construct a line segment from s′

1 in direction −u4 meeting s1v2 at
a point c2. For such a construction to be possible, for sufficiently small ε, we require that
the ray from s1 in direction u2 must intersect the ray from s′

1 in direction −u4. This occurs
if φ3 ≥ π − θ1 and φ3 < θ3 which follow from inequalities (2) and (3), respectively. Simi-
larly, we can construct a line segment from s′

2 in direction −u2 meeting s2v4 at a point c4.
Furthermore, c4 does not coincide with s′

2 since inequality (2) is a strict inequality.
Now, construct a new tree T ′ interconnecting {v1, v2, v3, v4} via Steiner points s′

1 and s′
2,

such that c2 is the corner point of the edge s′
1v2, c4 is the corner point of the edge s′

2v4 and
s2 is the corner point of the edge s′

2v3. The remaining external edge, s′
1v1, is a straight edge.

This is illustrated in Fig. 11b.
We next observe that |T ′|D = |T |D . To see this, note that in transforming T to T ′ the

edge s1s2 and line segments s1s′
1, s1c2 and s2c4 have been removed, and the edge s′

1s′
2 and

line segments s2s′
2, s′

2c4 and s′
1c2 have been added. But |s1s2|D = |s′

1s′
2|D (since s1 and s2

undergo identical translations), |s1s′
1|D = |s2s′

2|D (by construction) and |s1c2|D = |s′
2c4|D ,

|s2c4|D = |s′
1c2|D (since triangles �s1s′

1c2 and �s′
2s2c4 are congruent). Hence, |T ′|D =

|T |D . In other words, T ′ is also a full SMT on the terminal set of T .
We now show that there is a single direction set that is used by s1 and s2 in the original

full SMT, and that by performing a pair of shifts as described above we can construct a new
SMT such that the directions used by the edges incident with s1 exactly coincide with the
directions used by the edges incident with s2. We do this by showing that, for each of the
three colour labels for edges, the direction sets for s1 and s2 coincide on that colour and we
can ensure that all directions are used at each Steiner point. Note that this is trivially true for
the colour of the edge s1s2. Now, observe that the edges (or half-edges) s1v2 and s2v4 are
labelled with the same colour (say, blue). If both these line segments use the same direction
for every embedding then the direction sets for s1 and s2 coincide on the blue colour. If there
exists an embedding such that s1v2 and s2v4 have different directions then either θ3 > φ3 or
φ3 > θ3. In either case we can perform the local transformation above (swapping the roles
of s1 and s2 if necessary) resulting in a new SMT that uses both blue directions at s′

1 and s′
2.

In order for this new tree to be minimal (under any embedding of the original tree) it again
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follows that the direction sets for s1 and s2 coincide on the blue label, and that both directions
are used by both edges after applying the transformation. The same argument applies to the
remaining colour label, concluding the proof. �	

The statement of this theorem is similar in spirit to the result of Du et al. [12] for metrics
defined by strictly convex and differentiable unit circles, which says that edges of a full SMT
use exactly three different orientations. A corollary of our theorem is that the edges of a
full and fulsome SMT for a metric defined by a polygonal unit circle use at most six legal
orientations. In the following section we show that four legal orientations actually suffice.

6 Length-preserving shifts and canonical forms

The efficiency of the algorithms that we develop in this paper for constructing SMTs comes
from the fact that we can assume that full SMTs have particular canonical forms. Our means of
establishing these canonical forms is to use the properties of length preserving perturbations,
denoted zero-shifts, which we describe in this section (see also [13,17–19]).

Given a weighted set of legal orientations defining a normed plane, let the ordered subset
U = {u1, u2, . . . , uk} be a coloured direction set, as defined in Sect. 4. The elements of U ,
treated as vectors rooted at the origin, appear in counterclockwise order, beginning with u1,
which corresponds to the exclusively primary red direction, and u2, which corresponds to the
exclusively secondary red direction. By Lemma 4.1 we know that k = 4, 5 or 6. We define
the direction weight set of U to be the set {w1, w2, . . . , wk} where each wi = 1/|ui | (where
the norm | · | is the usual Euclidean norm). We define the direction angle set of U to be the
set {θ1, θ2, . . . , θk} where each θi is the angle between ui and ui+1 (where addition in the
subscripts is modulo k). Hence, for each i ∈ {1, . . . , k} we have cos θi = wiwi+1(ui · ui+1).
Note that the direction angle set must also satisfy the condition that

∑k
i=1 θi = 2π .

6.1 Fundamental zero-shifts and their applications

For a given coloured direction set U , let T be a full and fulsome SMT. Furthermore, assume
that the edges of T uses all directions in U .

We define a zero-shift as a perturbation of one or more Steiner points in T such that the
perturbation does not increase the length of T . Such a perturbation v is called a fundamental
zero-shift if it cannot be decomposed into two zero-shifts each of which acts on a subset of
the Steiner points acted on by v, and at least one of which acts on a proper subset of those
Steiner points. Here we will investigate those fundamental zero-shifts that act on either one
Steiner point or two adjacent Steiner points in T . In Sect. 6.2 we will in fact show that these
are the only fundamental zero-shifts that can occur in T .

Let s be a Steiner point in T such that the edges incident with s use all directions in U .
Clearly, for any U , there exists a T that contains such a Steiner point; for example, we can
construct a suitable SMT T with a single Steiner point.

We now consider properties of 1-point fundamental zero-shifts for s. We will show that
such a perturbation can exist only under very special conditions.

Lemma 6.1 Suppose the direction set U of T contains exactly 4 directions. Then there are
no 1-point zero-shifts for any Steiner points in T .

Proof Let s be a Steiner point in T . We first show that the angle θ between the blue and
green directions is strictly less than π .
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Suppose, on the contrary, that θ = π . Consider the SMT T ′ consisting of the edges in
T incident with s and their end points, where the terminals, v1, v2, v3, of T ′ are the three
neighbours of s. Let (v1, s) be the red edge of T ′. Since θ = π , it follows that v2, s and v3

are collinear. By a continuity argument, similar to the argument in the proof of Lemma 4.1, a
sufficiently small perturbation of v2 off the line through v2 and v3 will result in only a small
bounded perturbation of s. After applying this perturbation, the green and blue edges will
use their existing directions but require at least one extra direction in order to intersect close
to s. This means that U contains at least five directions, giving a contradiction.

Hence, 0 < θ < π . It follows that the position of s is uniquely determined by the positions
of the two adjacent vertices incident with the green and blue edges, and thus there can be no
1-point zero-shift of s. �	

If U contains five directions then the following lemma holds [7]:

Lemma 6.2 Suppose U , the direction set for T , contains exactly five directions, i.e., U =
{u1, . . . , u5}. Let s be a Steiner point in T using all directions in U . Without loss of generality,
we assume that there are two red directions (u1, u2) and two green directions (u3, u4). Let
{w1, w2, . . . , w5} and {θ1, θ2, . . . , θ5} be the direction weight set and direction angle set,
respectively, of U . Then there exist 1-point fundamental zero-shifts for s, perturbing s in the
directions of u5 and −u5.

Note that Lemma 6.2 still applies if any of the meeting angles are π . Indeed, in some cases
we get slightly stronger results. If θ3 + θ4 = π , then it is clear from the degeneracy of the
zero-shift that the perturbation can be performed in either direction even if no edge incident
with s uses direction u4. Similarly, if θ1 + θ5 = π , then a 1-point fundamental zero-shift can
be performed in either direction even if no edge incident with s uses direction u1.

If U contains six directions then we get the following result [7]:

Lemma 6.3 Suppose U = {u1, u2, . . . , u6} is the direction set for T . Let s be a Steiner point
in T using all directions in U . Let {w1, w2, . . . , w6} and {θ1, θ2, . . . , θ6} be the direction
weight set and direction angle set, respectively, of U . Then for every direction, there exists a
1-point fundamental zero-shift for s, perturbing s in that direction.

In addition to the properties given by Lemmas 6.2 and 6.3, precise conditions exist for
determining the existence of direction sets with cardinality 5 or 6 in terms of the directions
and weights [7].

Next, we consider properties of 2-point fundamental zero-shifts for T . The results here
are very similar to those in [6], and hence only require a brief discussion.

Lemma 6.4 Let s1 and s2 be neighbouring Steiner points in T . Assume that (s1, s2) is a
straight edge which is neither exclusively primary nor exclusively secondary. Let e1 and e2

be distinct edges of T incident with s1 and s2 respectively, such that e1 and e2 have the same
colour. Assume that for at least one of i = 1 or i = 2 the meeting angle between the two
edges other than ei at si is not π . For each i ∈ {1, 2} let vi be the closest neighbouring
node or corner point on ei to si . If −−→s1v1 and −−→

v2s2 have different directions then there exists a
2-point fundamental zero-shift for s1 and s2.

This lemma follows immediately from the proof of Theorem 5.2, using the construction
illustrated in Fig. 11. Note that the condition on (s1, s2) means that the direction set of T
contains at most five directions. It follows that there are no 1-point zero-shifts that move s1
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or s2 in the same direction as the constructed 2-point zero-shift, and hence that the 2-point
zero-shift is fundamental.

The remaining 2-point zero-shift not covered by Lemma 6.4 is where T necessarily
contains meeting angles of π at both s1 and s2, in each case between the two incident edges
other than e1 or e2. This implies that all edges incident with s1 and s2 other than e1 and e2 are
straight and collinear. In this case, the resulting 2-point zero-shift is no longer fundamental,
but can be decomposed into two 1-point zero-shifts, by the same argument used in the proof
of Lemma 5.2.

We conclude this section by proving two important properties of full and fulsome SMTs
that follow from the above properties of fundamental zero-shifts.

Lemma 6.5 Let s be a Steiner point in a fulsome SMT T . Let u, v and w be the three neigh-
bouring nodes of s in T , and suppose the edges (s, u) and (s, v) are straight and s, u and v

are collinear. Then w is a terminal.

Proof Let u and −u be the directions of the edges (s, u) and (s, v). We prove the lemma by
contradiction.

Assume w is not a terminal, and let a and b be the other two neighbouring nodes of w.
Suppose one of these nodes (say, a) has the property that the edge between w and that node,
(w, a), is straight and has direction u or −u. Then, by Lemma 5.3, we obtain a contradiction
to T being a fulsome SMT.

If, on the other hand, neither (w, a) nor (w, b) is straight with direction u or −u, then it
follows that the direction set for T contains at least five directions, with two directions for
each of the two colours associated with (s, u) and (s, v). Hence, by Lemmas 6.2 and 6.3,
there exists a 1-point zero-shift on w which we can continue to apply until either (w, a) or
(w, b) is straight with direction u or −u. Hence we again obtain the same contradiction as
above. �	

A consequence of Lemma 6.5 is the following theorem which gives strong restrictions on
when degree four Steiner points can occur as part of a fulsome SMT.

Theorem 6.1 In a fulsome SMT, a degree four Steiner point must be a cross, unless it is
adjacent to terminals only.

Proof Consider a degree four Steiner point s with neighbours v1, v2, v3 and v4 which does
not form a cross, that is, the second pair of opposite edges, (s, v2) and (s, v4), are not straight
and collinear (as in Fig. 8).

The fact that vertices v2 and v4 must be terminals follows by splitting the Steiner point s
into two adjacent degree three Steiner points and applying Lemma 6.5.

Before we prove that v1 and v3 also must be terminals, we make a few observations. Let S
be the line segment between v1 and v3. By moving s along S, we can always make the second
pair of opposite edges locally collinear in two different ways as shown in Fig. 12a and b. As a
consequence, the vertex v1 cannot be degree four Steiner point, since then we could construct
a pair of locally collinear edges around s and v1, respectively, but the collinear edges of s
and v1 would be non-parallel—hence making a length-decreasing shift of the edge (s, v1)

feasible.
So we may assume that v1 is a degree three Steiner point. By splitting s into degree three

Steiner points in the two topologically different ways shown in Fig. 8b and c, and applying
Theorem 5.2, it follows that the two edges (v1, a) and (v1, b) incident to v1 (other than (v1, s))
must use the same pair of adjacent legal orientations as (s, v2) and (s, v4). Therefore, if one
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Fig. 12 Illustration of observations for proving that a degree four Steiner point in a fulsome SMT must be a
cross

of the edges (v1, a) or (v1, b) is a bent edge, then we can always construct a pair of locally
collinear edges at v1. This again leads to a contradiction to length-minimality by using the
same arguments as in the degree four case.

As a consequence, we are left with the case where the edges (v1, a) and (v1, b) are straight
and not collinear (Fig. 12c). However, it is always possible to move s along S (the segment
between v1 and v3) to a point s′ where either (s′, v2) is straight and parallel to (v1, a)—or
(s′, v4) is straight and parallel to (v1, b). In both cases, by Lemma 5.3 we arrive at a contra-
diction to fulsomeness. �	

6.2 General zero-shifts

The following lemma gives conditions for the existence of general zero-shifts, and estab-
lishes a key property of such shifts: informally, that they can move exclusively primary or
exclusively secondary material from one edge to another. This lemma is the key tool for
constructing the canonical forms in Sect. 6.3.

Theorem 6.2 Let e1 and e2 be two edges in a full and fulsome SMT T such that e1 has an
exclusively secondary component and e2 has an exclusively primary component. Then there
exists a zero-shift acting on the Steiner points on the path from e1 to e2 in T , such that the
shift can continue to be performed until either e1 has no exclusively secondary component
or e2 has no exclusively primary component. Furthermore, this shift preserves the direction
of all straight edges except (possibly) e1 and e2.

Proof Let s1 and s2 be, respectively, the first and last Steiner points on the path from e1 to
e2 in T . For each i ∈ {1, 2} let θi be the meeting angle at si between the two incident edges
other than ei .

Case 1 For i = 1 or i = 2 assume that the two edges incident with si are straight edges and
θi = π . In that case there is a 1-point zero-shift moving si along the line through those other
two edges (as in the proof of Lemma 5.2). Assume first that T spans at least five terminals.
If the moving Steiner point si meets another Steiner point without the edge ei becoming
straight, then this is a contradiction to fulsomeness by Theorem 6.1. Next assume that T
spans four terminals or less. If a Steiner point si meets another Steiner point, then in fact we
must have s1 = s2 (the tree T is a star). In this case we can move the overlapping Steiner
points s1 and s2 jointly as indicated in the proof of Theorem 6.1 (see also Fig. 12). Hence it is
always possible either to make e1 exclusively primary or to make e2 exclusively secondary.
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Case 2 If Case 1 does not apply then we argue by induction (as in Theorem 4.1 of [6]).
As a first step, we show that the theorem holds for those cases where there are at most two
Steiner points in the path from e1 to e2, in other words, for 1-point and 2-point zero-shifts. We
also show that in each of these cases the zero-shift strictly decreases the ratio of secondary
material to primary material in e1 and strictly increases it in e2.

Case 2.1: 1-point zero-shifts. This case occurs where e1 and e2 are both incident with the
same Steiner point s, that is, s2 = s1 = s. Let v be the neighbouring vertex to s1 that is not
an endpoint of e1 or e2. The zero-shift either moves s away from or towards v. If s moves
away from v then the lemma clearly holds. If s moves towards v then the only problem that
can occur is that the moving Steiner point may meet v before either e1 or e2 is straight. But
in that case T is either not fulsome (if v is a terminal) or we have two adjacent bent edges
incident with a degree four Steiner point, which is a contradiction to T being an SMT, by
Lemma 5.1.

Case 2.2: 2-point zero-shifts. This case occurs where e1 and e2 are incident with neighbouring
Steiner points, s1 and s2. Firstly, suppose that e1 and e2 both have the same colour. Then
the 2-point zero-shift is a fundamental zero-shift, of the sort illustrated in Fig. 11b (where
(s1, v2) = e1 and (s2, v4) = e2). This zero-shift acts to decrease the the length of one of the
edges e0 incident with s1 and s2 but not on the path from e1 to e2 (where (s1, v1) = e0 in
the figure). It immediately follows that the lemma holds, unless the length of e0 decreases to
0 before either e1 or e2 is straight. However, in such a case the tree contains a degree four
Steiner point with an incident bent edge, and a second Steiner point, giving a contradiction
to fulsomeness by Theorem 6.1.

Suppose, on the other hand, that e1 and e2 have different colours. Let e0 be the edge
incident with s1 with the same colour as e2. If e0 is exclusively primary, then an appropri-
ate zero-shift can be constructed as follows. We can apply a small 1-point zero-shift at s1,
effectively transferring an arbitrarily small exclusively secondary component to e0. More
specifically, it strictly reduces the secondary/primary material ratio in e1, and increases it in
e0. Now there exists a fundamental 2-point zero-shift between the secondary component of
e0 and the edge e2. Because the secondary component of e can be assumed to be arbitrarily
small, it follows that this second shift can reduce the secondary component of e0 to 0. Hence,
together these two shifts give a zero-shift on the path between e1 and e2, that preserves the
direction of e0. The only remaining subcase is where e0 has an exclusively secondary compo-
nent, in which case we apply a similar argument, but reverse the order of the two fundamental
zero-shifts.

We now conclude the argument by induction on the number of Steiner points in the path
between e1 and e2, using the method of proof of Theorem 4.1 of [6], which essentially
generalises the construction in the previous paragraph. An important thing to note, in the
inductive step, is that we can always find an edge e0 with exclusively primary or exclusively
secondary material and incident with some s0 on the path between s1 and s2 such that the
condition of Case 1 (θ0 = π ) does not apply at s0. This means that the required increase and
decrease in secondary/primary material ratio occurs in the smaller zero-shift by the inductive
assumptions. The induction argument now follows easily. �	

Note that an immediate corollary of the proof of Theorem 6.2 is that any zero-shift, other
than the fundamental zero-shifts described in Sect. 6.1, can be decomposed into two zero-
shifts at least one of which acts on a strictly smaller set of Steiner points. Hence, the only
fundamental zero-shifts are those described in Sect. 6.1.
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6.3 Canonical forms

The existence of zero-shifts makes it possible to transform any full and fulsome SMT into
another SMT with the same topology that has some well-defined canonical form. In this
section we outline the canonical forms proposed in [5] for the uniform orientation metric and
show that they also apply to Steiner trees for the fixed orientation metric.

Definition 6.1 Given an ordering of the edges in a full Steiner topology T , an SMT T for
topology T is said to be canonical with respect to that ordering if T contains at most one bent
edge and all primary edges and half-edges of T come before secondary edges and half-edges
of T under the ordering.

In a canonical tree there therefore exists a so-called transition edge (which is possibly a bent
edge), such that all edges that appear before the transition edge wrt. the given ordering are
primary and all edges appear after the transition edge are secondary. Hence a canonical tree
has at most one bent edge.

The proof of the following theorem follows immediately from the fact that we can use
zero-shifts to move primary/secondary components between edges in T . (A detailed proof is
given in [5], and it works without modifications for the more general fixed orientation case.)

Theorem 6.3 Let a set terminals N and a full Steiner topology T for that set of terminals
be given. Suppose there exists a full and fulsome SMT for N with topology T . Then for any
ordering of the edges of T there exists an SMT for N (with topology T ) which is canonical
with respect to that ordering.

Depending on the chosen ordering, various canonical forms can be obtained [5]. From an
algorithmic point of view, the depth-first ordering is the most important one: Root T at some
terminal r and order the edges as they appear in a depth-first traversal of the tree from r . This
results in a canonical form that is illustrated in Fig. 13. If we divide such a canonical tree T
into two subtrees T1 and T2 by deleting the transition edge, the tree T2 that does not contain
the root is secondary (i.e., all edges in T2 are secondary edges). Furthermore, the path p from

Fig. 13 Illustration of a tree T
with the depth-first order
canonical form. Primary edges
are drawn as bold edges, and the
remaining edges are secondary
edges
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r to the transition edge is primary, while the subtrees that are attached to p are each either
primary or secondary subtrees. These properties are used by the linear-time algorithm for
constructing a SMT for a given topology in Sect. 7.

By choosing another ordering of the edges, we obtain the following interesting theorem [5]:

Theorem 6.4 Let T be a full and fulsome SMT for terminal set N with topology T . Then
there exists an SMT T ′ for terminal set N with topology T that uses at most four legal
orientations.

Proof Order the edges of T by their colour; for example, the red edges may come first in the
ordering followed by the green edges and then the blue edges. Consider a canonical SMT T ′
that comes from this ordering (by Theorem 6.3 such a tree exists). Then it follows from the
canonical form that the edges of any given colour, not the same as the colour of the transition
edge, are either all primary or all secondary. Hence T ′ uses at most four legal orientations. �	

Finally, we note that the well-known Hwang canonical form for rectilinear trees [15,35]
is a special case of the depth-first ordering canonical form. The first observation is that by
Lemma 6.5, in a fulsome and canonical rectilinear SMT the topology of a full component
must be a chain in which every Steiner point is connected directly to at least one terminal.
The Hwang topology form is now obtained by rooting the topology in one end of the chain,
and constructing the depth-first ordering canonical form. The fact that there can be at most
two terminals in the subtree below the bent edge follows from the fullness of the tree.

7 Linear time algorithm for a given topology

By exploiting the concept of canonical forms, in this section we present an O(σn) time
algorithm to compute a full and fulsome SMT T for a given full Steiner topology T with n
terminals (or show that no such tree exists). Our algorithm is a generalisation of the algorithm
by Brazil et al. [5] which works for uniform orientation metrics with λ > 3 given orienta-
tions. In the following we denote this as the DFS-canonical algorithm, since it is based on
the canonical form that comes from a depth-first traversal of the topology T . Here we first
present the main algorithmic idea in Sect. 7.1. Then we show that the so-called merging
operation can be performed in constant time (Sect. 7.2), and in Sect. 7.3 we briefly present
the DFS-canonical algorithm and argue that it also works for the general fixed orientation
metric.

7.1 Labelling and merging algorithm

Consider the topology T shown in Fig. 14. This topology has five terminals t1, . . . , t5. We
know from Sect. 5 that there exists a direction set U that is used by every Steiner point in a
full SMT T with topology T (assuming that such a tree T exists). Assume furthermore that
the primary/secondary labelling of the edges in T is as in Fig. 14. Hence the edge connect-
ing, e.g., Steiner point s1 to terminal t1 is a straight edge with a primary direction from U ;
however, the colour of edge (s1, t1) is not known. Steiner point s1 is connected by straight
and labelled edges to two nodes (here terminals) with known positions. As will be shown in
Sect. 7.2, then in constant time we can either compute the unique location of s1—or decide
that s1 cannot exist with the given direction set and primary/secondary labelling.

The operation of computing the location of a node in T given the locations of two of its
neighbours is called a merging operation. If a direction set is given and all edges except one
have been labelled primary or secondary (as in Fig. 14), then we can compute a tree under this
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Fig. 14 Labelling and bottom-up
construction of SMT for a given
topology spanning five terminals
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labelling or decide that no such tree exists in O(n) time, where n is the number of terminals
in T . We simply root T at the unlabelled (transition) edge and merge nodes bottom-up in
T . In Fig. 14 we could, e.g., first compute s1 based on t1 and t2, then s2 based on t3 and t4,
then s3 based on s2 and t5, and finally construct the possibly bent transition edge based on
the positions of the Steiner points s1 and s3.

This is the main algorithmic idea employed in the linear-time algorithm. By using the
canonical forms that come from ordering the edges in T , the number of possible labellings
can be reduced from an exponential number—essentially two possible labels per edge in the
tree—to a linear number of possible labellings (Sect. 7.3).

7.2 Constant-time merging operation

In order to facilitate the efficient bottom-up construction outlined in Sect. 7.1, we need a
constant-time merging operation. The lemma below was originally proved only for uniform
orientation metrics with λ > 3 [5]. The generalization is rather complex and technical, and
we refer to [7] for the full proof.

Lemma 7.1 Let T be a full SMT with full Steiner topology T , and let s be a Steiner point
in T . Assume that the locations in T of two of the neighbours of s, u and v, are known; fur-
thermore, assume that each edge (s, u) and (s, v) is straight and has been labelled primary
or secondary. Finally, assume that we know the direction set for T . If Steiner point s exists
in T and is not collinear with u and v, then its location is unique and can be computed in
constant time; also, the colours of the edges (s, u) and (s, v)—and hence also the colour of
the third edge incident with s—are unique.

If s, u and v are collinear, then again the the colours of the edges (s, u), (s, v) and the
third edge incident with s are uniquely determined, but the position of s is not unique. This
does not cause a problem in the bottom-up construction algorithm due to Lemma 6.5. As a
consequence of this lemma, at most one merging operation in the bottom-up construction
algorithm can result in a non-unique Steiner point s. In fact, this must then be the final merging
operation where the third edge incident to s (in addition to (s, u) and (s, v)) is the transition
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edge, and the other end of this edge is a terminal t . This holds since the construction is moving
in towards the transition edge. What we can do here is leave the position of the Steiner point
undetermined and construct the transition edge by finding the shortest edge connecting t to
the line segment uv. Clearly, this can also be done in constant time like an ordinary merging
operation.

7.3 Linear-time DFS-canonical algorithm

In this section we show how the linear-time construction algorithm from [5] can be gener-
alised to the fixed orientation metric. The algorithm uses the algorithmic idea outlined in
Sect. 7.1, and the constant-time merging operation from Sect. 7.2. The algorithm is based on
the depth-first traversal canonical form, and therefore denoted the DFS-canonical algorithm.

The DFS-canonical algorithm runs in O(n) time for a given direction set U . In Sect. 4
we showed that the number of possible direction sets is �(σ), and that the direction sets
furthermore can be determined in �(σ) time. By iterating the O(n) time algorithm over all
direction sets, we obtain a total running time of �(σ) + O(σn) which is O(σn).

The idea of the DFS-canonical algorithm (for a given topology T and fixed direction
set U) is that if there exists a full and fulsome SMT T with full Steiner topology T and
direction set U , then T can be assumed to have the canonical form that is illustrated in
Fig. 13. The algorithm consists of two depth-first traversals of T from an arbitrary root
terminal r :

1. Secondary subtrees are constructed bottom-up in T , that is, subtrees where all edges are
labelled as secondary edges. The merging operation is performed bottom-up for each
Steiner node; if a Steiner point cannot be constructed, then none of the ancestors of the
node (relative to r ) can be constructed either.

2. Primary subtrees are constructed bottom-up in T . At the same time, each edge in T is
tried as potential transition edge. The idea is that it is possible iteratively to construct the
endpoints of the transition in constant time per edge: The endpoint that is closest to the
root r is constructed in the second traversal, while the other endpoint is constructed in
the first traversal of T (see Fig. 13).

Full implementation details are given by Brazil et al. [5]. Thus we have the following
theorem:

Theorem 7.1 Given a full Steiner topology T with n terminals and a fixed orientation metric
with σ legal orientations, then in O(σn) time we can either construct a full and fulsome SMT
T with topology T , or decide that no such tree exists.

8 Conclusion

The main contribution of this paper is to show the existence of powerful canonical forms for
SMTs for arbitrary (weighted) fixed orientation metrics. We also gave efficient and simple
algorithms to compute all direction sets for a given fixed orientation metric, and to compute
a SMT for a given full Steiner topology. Our results show that the two-phase exact algorithm
for uniform orientation metrics [27] can easily be adapted to general fixed orientation met-
rics. This would most likely allow the efficient computation of large-scale SMTs for arbitrary
fixed orientation metrics.

Future research will focus on generalising our results further to metrics given by piecewise
differentiable unit circles—including resolving the conjecture that in any normed plane and
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for any set of terminals there exists an SMT where the edges of each full component use
at most three orientations (where the orientation of an edge is defined by the straight line
between the endpoints of the edge).

Acknowledgements This work was partially supported by a grant from the Australia Research Council and
by a grant from the Danish Natural Science Research Council (51-00-0336).

References

1. Brazil, M.: Steiner minimum trees in uniform orientation metrics. In: Du D.-Z., Cheng X. (eds.) Steiner
Trees in Industries, pp. 1–27. Kluwer Academic Publishers (2001)

2. Brazil, M., Thomas, D.A., Weng, J.F.: Minimum networks in uniform orientation metrics. SIAM
J. Comput. 30, 1579–1593 (2000)

3. Brazil, M., Thomas, D.A., Weng, J.F.: Forbidden subpaths for Steiner minimum networks in uniform
orientation metrics. Networks 39, 186–202 (2002)

4. Brazil, M., Thomas, D.A., Weng, J.F.: Locally minimal uniformly oriented shortest networks. Discrete
Appl. Math. 154, 2545–2564 (2006)

5. Brazil, M., Thomas, D.A., Weng, J.F., Zachariasen, M.: Canonical forms and algorithms for Steiner trees
in uniform orientation metrics. Algorithmica 44, 281–300 (2006)

6. Brazil, M., Winter, P., Zachariasen, M.: Flexibility of Steiner trees in uniform orientation metrics.
Networks 46, 142–153 (2005)

7. Brazil, M., Zachariasen, M.: Steiner trees for fixed orientation metrics. In: Technical Report 06-11, DIKU,
Department of Computer Science, University of Copenhagen (2006). www.diku.dk/publikationer/
tekniske.rapporter/rapporter/06-11.pdf

8. Chakerian, G.D., Ghandehari, M.A.: The Fermat problem in Minkowski spaces. Geomet.
Dedicata 17, 227–238 (1985)

9. Chen, H., Cheng, C.K., Kahng, A.B., Mandoiu, I.I., Wang, Q., Yao, B.: The Y-architecture for on-
chip interconnect: analysis and methodology. In: Proceedings ACM/IEEE International Conference on
Computer-Aided Design (ICCAD), pp. 13–19, 2003

10. Chen, H., Yao, B., Zhou, F., Cheng, C.K.: The Y-architecture: yet another on-chip interconnect solution.
In: Proceedings Asia-Pacific Design Automation Conference, pp. 840–846, 2003

11. Cieslik, D.: The vertex degrees of Steiner minimal trees in Minkowski planes. In: Topics in Combinatorics
and Graph Theory, pp. 201–206. Physica-Verlag, Heidelberg, 1990

12. Du, D.-Z., Gao, B., Graham, R.L., Liu, Z.-C., Wan, P.-J.: Minimum Steiner trees in normed planes. Dis-
crete Comput. Geomet. 9, 351–370 (1993)

13. Du, D.Z., Hwang, F.K.: Reducing the Steiner problem in a normed space. SIAM J. Comput. 21, 1001–
1007 (1992)

14. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14(2), 255–265 (1966)
15. Hwang, F.K.: On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math. 30, 104–114 (1976)
16. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner tree problem. Annals of Discrete Mathematics

53. Elsevier Science Publishers, Netherlands (1992)
17. Koh, C.-K.: Steiner Problem in Octilinear Routing Model. Master’s thesis, National University of Sin-

gapore (1995)
18. Lee, D.T., Shen, C.F.: The Steiner minimal tree problem in the λ-geometry plane. In: ISAAC’96, Lecture

Notes in Computer Science 1178, pp. 247–255 (1996)
19. Lee, D.T., Shen, C.F., Ding, C.L.: On Steiner tree problem with 45 degree routing. In: Proceedings of

the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1680–1683, 1995
20. Li, Y.Y., Leung, K.S., Wong, C.K.: Steiner trees in general nonuniform orientations. Computing 66,

41–78 (2001)
21. Lin, G.-H., Xue, G.: The Steiner tree problem in λ4-geometry plane. In: ISAAC’98, Lecture Notes in

Computer Science 1533, pp. 327–337, 1998
22. Lin, G.-H., Xue, G.: A linear time algorithm for computing hexagonal Steiner minimum trees for ter-

minals on the boundary of a regular hexagon. In: Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 196–199, 2000

23. Lin, G.-H., Xue, G.: Optimal layout of hexagonal minimum spanning trees in linear time. In: Proceedings
of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 633–636, 2000

123

www.diku.dk/publikationer/tekniske.rapporter/rapporter/06-11.pdf
www.diku.dk/publikationer/tekniske.rapporter/rapporter/06-11.pdf


J Glob Optim (2009) 43:141–169 169

24. Lin, G.-H., Xue, G.: Reducing the Steiner problem in four uniform orientations. Networks 35,
287–301 (2000)

25. Lin, G.-H., Xue, G., Zhou, D.: Approximating hexagonal Steiner minimal trees by fast optimal layout
of minimum spanning trees. In: International Conference on Computer Design (ICCD), pp. 392–398,
1999

26. Martini, H., Swanepoel, K.J., Weiss, G.: The Fermat-Torricelli problem in normed planes and spaces.
J. Optim. Theory Appl. 115, 283–314 (2002)

27. Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree
problem. In: Proceedings of the 10th European Symposium on Algorithms, Lecture Notes in Computer
Science, vol. 2461, pp. 760–772. Springer (2002)

28. Sarrafzadeh, M., Wong, C.K.: Hierarchical Steiner tree construction in uniform orientations. IEEE Trans.
Comput. Aid. Des. 11, 1095–1103 (1992)

29. Swanepoel, K.J.: The local Steiner problem in normed planes. Networks 36, 104–113 (2000)
30. Teig, S.: The X architecture: not your father’s diagonal wiring. In: International Workshop on System-

Level Interconnect Prediction (SLIP), pp. 33–37, 2002
31. Widmayer, P., Wu, Y.F., Wong, C.K.: On some distance problems in fixed orientations. SIAM J. Com-

put. 16(4), 728–746 (1987)
32. X Initiative Home Page. http://www.xinitiative.com, 2001
33. Xue, G., Thulasiraman, K.: Computing the shortest network under a fixed topology. IEEE Trans. Com-

put. 51, 1117–1120 (2002)
34. Yildiz, M.C., Madden, P.H.: Preferred direction Steiner trees. In: Proceedings of the 11th ACM Great

Lakes Symposium on VLSI (GLSVLSI), pp. 56–61, 2001
35. Zachariasen, M.: Rectilinear full Steiner tree generation. Networks 33, 125–143 (1999)
36. Zachariasen, M.: The rectilinear Steiner tree problem: a tutorial. In: Du, D.-Z., Cheng, X. (eds.) Steiner

Trees in Industries, pp. 467–507. Kluwer Academic Publishers, Boston (2001)
37. Zachariasen, M.: Comment on “Computing the shortest network under a fixed topology”. IEEE Trans.

Comput. 55, 783–784 (2006)

123

http://www.xinitiative.com

	Steiner trees for fixed orientation metrics
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Normed planes
	2.2 Steiner trees in normed planes with polygonally bounded unit circle

	3 Meeting angles for Steiner points
	3.1 Steiner configurations
	3.2 Steiner configurations for fixed orientation metrics

	4 Direction sets
	4.1 Linear-time algorithm for one fixed edge
	4.2 Linear-time enumeration algorithm

	5 Directions in a full SMT
	5.1 Splitting of degree four Steiner points
	5.2 Direction sets for full SMTs

	6 Length-preserving shifts and canonical forms
	6.1 Fundamental zero-shifts and their applications
	6.2 General zero-shifts
	6.3 Canonical forms

	7 Linear time algorithm for a given topology
	7.1 Labelling and merging algorithm
	7.2 Constant-time merging operation
	7.3 Linear-time DFS-canonical algorithm

	8 Conclusion
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


